"It takes CO₂ to save CO₂ and ... it takes money to make money"

Michel LEBOEUF

Head of Major High Speed Rail Projects SNCF Voyages Paris

Introduction:

Three received wisdoms about trains running faster:

- they are more energy consuming,
- they are more harmful for the environment
- they are more expensive.

So ...

What's the point with increasing the commercial speed?

Demonstration

1 – Carbon balance of a rail high speed line

How to assess it?

2 – Impact of a speed increase on the carbon balance

"It takes CO2 to save CO2 and ..."

3 – The cost of speed

"... it takes money to make money."

HSL commisioned in June 2001
250 km from Valence to Marseille
22 million passengers

1. Conception **Energy in offices**

Paper Informatic and Electronic materials

Earthwork Transport of construction materials Structures (Bridges, Tunnels, etc.) Tracks with Ballast, Rail & Sleeper Equipments for Signaling & Electricty transport Railway Stations & Maintenance Centers **Rolling Stock Construction**

3. Operation

Energy Consumptions for Rolling Stock (traction, air conditioning, recovery braking energy) Maintenance of Rolling Stock

> 4. Disposal Disposal of Rolling Stock

"Rolling Stock + line equipments"

"Stations"

"Structures"

Conception	250 km	100 years
Railway equipments	250 km	50 years
Rail	250 km	30 years
Tunnels	12.8 km	100 years
Viaducts	11.km	100 years
Earthworks	191.4 km	100 years
Main Stations	2 stations	100 years
Secondary stations	2 stations	100 years

2,200,000 tons of CO2 **Total** over the whole infrastructure life period

Rolling Stock carbon footprint

tCO₂/trainset over its life period

- 155 t of Fiber reinforced plastic
- 34 t of copper
- 50 of glass
- average lifespan: 30 years
- 670 seats per train (average)
- revision: every 4 years: 45 t of iron and 0.25 t of copper
- maintenance and cleaning every second day: 7.7 t of water, 0.125 t of waste, +1,555 kWh
- asumption for disposal: all metals may be recycled into other products

Operations carbon footprint

Calculation principle

CO2 emissions

for Infrastructure & Rolling Stock construction

for Infrastructure & Rolling Stock renewals

for High speed train operations

Net operation t CO₂ savings "Pay back period" =

> Net t CO₂ investment

= 8 years

A favourable point

Carbon Footprint of Electricity Generation

Coal

Oil

Natural Gas

Biomass

Nuclear

Hydropower

Wind

Photovoltaic

Other

91 g CO₂ per kWh in France

Carbon Footprint of Electricity Generation (2007)*

Infrastructure Mix

Energy efficiency:

Demonstration

1 – Carbon balance of a rail high speed line

How to assess it?

2 – Impact of a speed increase on the carbon balance

"It takes CO₂ to save CO₂ and ..."

3 – The cost of speed

"... it takes money to make money."

2 – Impact of a speed increase on the carbon balance

But what about the train energy consumption?

Power rule:

Does the train power increase with the cube of its speed?

Energy rule:

Is energy consumption in proportion with the square of the speed?

2 – Impact of a speed increase on the carbon balance

2 – Impact of a speed increase on the carbon balance

High Speed Train 442 km – 114 min

DYAGES

3. The cost of speed

First Paris-Lyon High Speed Line Commissioned in 1981 & 1983

Speed:

260 km/h in 1981 270 km/h in 1985 300 km/h in 2000

Second Paris-Lyon High Speed Line planned for 2025

What Speed?

300 km/h 320 km/h or 360 km/h

Demonstration

1 – Carbon balance of a rail high speed line

How to assess it?

2 – Impact of a speed increase on the carbon balance

"It takes CO₂ to save CO₂ and ..."

3 – The cost of speed

"... it takes money to make money."

3. The cost of speed

% Rail / Rail+Air

Two key factors:

-a large air market

-rail travel times in the 2 to 4h range

"It takes money to make money"

